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OBJECTIVE EVALUATION OF CUTANEOUS THERMAL SENSITIVITY:

Regional Sweating Responses to Contralateral Cooling

SYNOPSIS

Sensations of humans to changes in environmental temper-

ature are difficult to express objectively in quantitative terms.

Measurable effects of ambient thermal stress on heart rate and

respiration, par example, require gross changes in intensity and

time and are quite unreliable because of interference through

uncontrollable mental excitation. The present investigation was

undertaken to study the possibility of obtaining reliable and

objective quantitative responses under conditions where presum-

ably only temperature changes in localized cutaneous areas evoked

measurable changes in remote sudomotor activity. The fact that

in this investigation both male and female subjects were studied,

provided a first opportunity to evaluate objectively whether a

sex difference in thermal sensitivity exists.

Because of the innovative nature of this study, more

questions arose than were answered. On the other hand, the

feasibility to obtain valuable information of human thermal sensi-

tivity became quite apparent. A continued effort with the present

technique seems certain to provide more useful information for

establishing comfort and safety limits for humans in different

thermal environments under various conditions of stress.
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CHAPTER I

INTRODUCTION

The hypothalamus, the neural site for integration of

thermosensory input, is generally considered to be the control-

ler of thermal eccrine sweating. However, various peripheral

events have been clearly demonstrated to influence the regula-

tion of eccrine sweating. These peripheral modifiers have been

increasingly scrutinized for the last 50 years.

Investigators have observed in man the effects of partial

body heating and cooling in a hot environment, but the conclu-

sions and assertions drawn from these studies are varied and

often conflicting. Apparently, the contribution and importance

of peripheral events to thermoregulatory control are not yet ful-

ly understood; specifically, the nature of the mechanism(s) caus-

ing sweat rate reduction as a result of cutaneous cooling has

not been fully elucidated. The modifications in sweat rate, skin

temperature, blood flow, receptor activation and other related

factors produced by cutaneous cold stimulation are pertinent to

understanding the nature of thermoregulatory control. This pres-

ent study was designed and performed with the intent of more

clearly describing the nature of the reflex sweating response to

remote cutaneous cooling.

1
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Historical Background

Filehne (1910) was the first to record that regional cu-

taneous cooling caused a generalized reduction of sweating.

Because thermal sweating was diminished by placing the hands in

cold water and no change in rectal temperature resulted from

this action, he reasoned that cutaneous thermal receptors initi-

ated a reflex mediated by the central thermoregulatory apparatus.

In experiments designed to identify the mechanism involved, Hill

(1921) observed that, by occluding the circulation to the arms

before hand cooling, the reduction in sweating over the rest of

the body did not occur. Hill maintained that the whole body

sweat reduction during hand cooling must be due to blood cooling.

Burch and Sodeman (1944) tested Hill's conclusions by cooling the

forearm of subjects in a hot environment both before and during

arterial occlusion of the cooled limb, and agreed that the effects

produced by regional cooling must result mainly from changes in

normal body temperature and not from any significant neural in-

fluences.

In challenge to Hill's assertions, Kuno (1956) occluded

the circulation to a hand, immediately immersed that hand in

water at 10° C, and observed a marked suppression in whole body

sweating for 5 minutes. When the occlusion was removed, but the

hand still remained in the water, a gradual decrease in sweating

was observed to last an additional 5 minutes. Further, inhibition

of sweating lasted about 10 minutes after withdrawl of the hand

from the cold water. Kuno considered the observed response to

be a nervous reflex elicited by cold stimulation because the
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initial inhibition of sweating was sudden and transitory in

nature.

Since the response to regional cooling was to be regarded

as a neural reflex, attempts were made to identify the pathways,

both afferent and efferent. Because the response to regional

cooling was a diminution of whole body sweat rate, the efferent

neural pathway certainly involved an alteration in generalized

sympathetic nervous discharge to the sweat glands. However, the

afferent neural pathway remained elusive. Brebner and Kerslake

(1961a), like Hill (1921) and Burch and Sodeman (1944), found

that skin cooling of legs distal to circulatory occlusion re-

sulted in no depression of forearm sweat rate. These investiga-

tors concluded that their results failed to demonstrate the ex-

istence of thermoreceptors in the skin of the legs, which contri-

buted to the control of forearm sweat rate. However, later the

same year Brebner and Kerslake (1961b) reported that cyclic heat-

ing of the trunk influenced the forearm sweat rate. Because of

the 3.5 second or less time delay between each stimulus and

response, they concluded that their findings demonstrated the

existence of a neural pathway whereby thermoreceptors in the

skin of the trunk could influence activity of the sweat glands

in the forearm.

By examining three subjects, a normal man, a lumbar sym-

pathectomized man and a paraplegic man (section at T-12), Rawson

and Hardy (1967) observed changes in trunk sweating due to leg

cooling, having previously arrested the circulation to the legs.

Trunk sweating was depressed in the normal and lumbar sympathec-
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tomized subjects, but not in the paraplegic subject whose sym-

pathetic innervation was intact. Thley concluded that the retflex

was primarily neurogenic, and that intact somatosensory nerves

were essential if the reflex was to be observed. The identifi-

cation of the somatosensory nerves responsible for the reflex

response to regional cooling remains obscure. During the same

year, Bullard, Banerjee and Mac Intyre (1967) performed regional

cooling experiments on sweating subjects. Cooling the area dis-

tal to limb occlusion sharply diminished the sweat rates in other

areas of the body. Contrary to Hill (1921), Bullard, Banerjee

and Mac Intyre (1967) substantiated the neural reflex hypothesis.

Subsequently, Banerjee, Elizondo and Bullard (1969) investigated

the reflex response of human sweat glands to different rates of

skin cooling. They ascertained that both the size of the skin

area cooled and the rate of change in temperature applied to be

important in determining the magnitude as well as the duration

of the reflex response.

Statement of Purpose

The present study was designed to determine the regional

variations in sweating responses to remote or contralateral cool-

ing of small skin areas. Further, an attempt was made to corre-

late these responses with the period of latency to onset of whole

body sweating by exposure to a hot environment. Specifically,

the following hypotheses were formulated to be tested experi-

mentally:

1. The immediate response of the eccrine sweat glands to



5

contralateral cutaneous cooling is mediated by a

neural reflex.

2. The responses of the sweat glands in the skin of the

forearm, calf and over the scapula are quantitatively

similar, irrespective of the site of contralateral

skin area cooled, when the size of the area cooled is

constant.

3. The response of the sweat glands to contralateral skin

cooling is quantitatively similar in men and women.

4. The response of the sweat glands to contralateral skin

cooling in females is influenced by the menstrual

cycle.

5. The threshold and latency to the onset of eccrine

sweating produced by total body heating differs be-

tween men and women, and may be used to predict re-

sponsiveness to local skin cooling.



CHAPTER II

METHODS

Subjects

Four male and 4 female subjects participated in these

experiments, each subject being studied on 6 different occasions.

Prior to these experiments, the protocol was approved by the hu-

man research committee. Each subject was required (1) to submit

to a physical examination by a physician, (2) to take and pass a

standardized treadmill stress test designed to detect possible

cardiovascular pathology, and (3) to sign a consent form giving

permission to allow him- or herself to be used as a subject. In

addition, subjects were requested to avoid all medication during

the entire 2-3 month period when the experiments were being con-

ducted. The age, physical characteristics and other biometric

data of each subject are presented in Table 1.

Materials

During each experiment, sweat rates from the skin of the

right lateral calf, right medial forearm and over the right

scapula were measured continuously and simultaneously by resis-

tance hygrometry (Bullard, 1962; van Beaumont, Bullard and

Banerjee, 1966; van Beaumont, 1969). An additional sweat cap-

sule was placed on the left medial forearm in all cases just

6
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TABLE 1

AGE, PHYSICAL CHARACTERISTICS AND
BIOMETRIC DATA OF SUBJECTS

Subject Age Height Weight B!a % of BSA cooled % of BSA cooled Average TAC
(years) (cm) (kg) (m ) by thermode by WHC (0°C)

R. W. 24 175 83 1.99 0.4 2.67 48.8
N. B. 23 192 94 2.25 0.4 2.38 44.8
J. D. 23 187 92 2.19 0.4 2.38 49.1
J. K. 23 181 66 1.84 0.4 2.75 45.0

mean 23.2 184 84 2.07 0.4 2.55 46.9

c M. M. 28 169 63 1.71 0.5 2.39 47.8
E. S. 24 178 67 1.83 0.4 2.22 50.2
M. S. 25 173 60 1.71 0.5 2.82 48.5
G. T. 24 164 52 1.54 0.5 2.67 46.8

mean 25.2 171 60 1.70 0.5 2.52 48.3

aBody Surface Area.

bWhole Hand Cooling.

CAverage environmental temperature of 4 experiments for each subject.
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prior to the left whole hand cooling procedures. Sweat cap-

sules were held in place using standard ECG electrode rubber

straps. Similarly, skin temperatures (Ts) of the right lateral

calf, over the right scapula, right medial forearm, right medial

thigh, right chest, and forehead were continuously measured by

thermistors also held in place with rubber straps. Rectal tem-

perature (TR) of each subject was continuously measured during

1 of the 4 experiments by insertion of a thermistor 12 cm into

the rectum of the subject. The T
R
was continuously measured in

all experiments where threshold of sweating was determined.

Thermode temperature (TT)-was continuously measured by a therm-

istor taped with a light-weight adhesive material to the surface

of the thermode in all experiments. Sweat rates, i, TT and T

were simultaneously recorded on a Honeywell visicorder.

The thermode used in this study was a rectangular-shaped

copper box with 2 inlets and 1 outlet through which water was

pumped to maintain any desired temperature. The surface area of

2the thermode which contacted the skin measured 81 cm2 . In two

subjects, 1 male and 1 female, contact of the entire surface of

the thermode with the scapular skin area was not complete be-

cause of body contour. In those cases the position of the ther-

mode was adjusted to produce maximum skin contact, i.e., at least

75% of the surface of the thermode contacted the skin. Prob-

lems of this type were not encountered on the other two skin

areas cooled by the thermode. Except during cooling intervals,

the temperature of the thermode was maintained at the same tem-

perature as the underlying skin. After initiation of a cutane-
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ous cooling period, changes in thermode temperature were 75%

complete by the end of 30 seconds, 95% complete by the end of

the first minute and 100% complete by the end of 90 seconds in

all cases.

Mean skin temperature (TS) was calculated as the sum of the

six skin temperatures weighted according to the fraction of total

skin surface each area represented (Hardy and Du Bois, 1938a).

The following formula was applied:

TS = 0.07T1 + 0.19T2 + 0.175T3 + 0.175T4 + 0.20T5 + 0.19T6

T1 through T6 represented skin temperatures of the forehead, arm,

chest, back, lower leg and thigh, respectively. Mean body tem-

perature (TB) was calculated as follows:

TB = Q.8 TR + 0.2TS

In this formula, the rectal (core) temperature and mean skin tem-

perature were weighted by the corresponding coefficients accord-

ing to the influence each temperature contributed to TB (Hardy

and Du Bois, 1938b).

Hand area was determined by covering the left hand with

transparent surgical adhesive. After the adhesive was cut away

from the hand and mounted on a flat surface, the surface area was

measured using a compensating polar planimeter.

Sweat rates were quantitated by measuring the area between

the baseline and cyclic sweat rate tracing in 1-minute intervals

using a compensating polar planimeter. The area measured was

equated to a sweat rate and recorded as milligrams of sweat per

square centimeter of skin surface per minute (mg/cm 2/min).

Sweat rate data were evaluated statistically using analy-
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sis of variance (Sokal and Rohlf, 1969). Sweat rates during

thermode-induced cutaneous or whole hand cooling were individ-

ually compared to the mean of three successive 1-minute control

values just prior to cooling. Compared to their respective con-

trols, the responses were considered to be statistically signi-

ficant at the 0.05 level of confidence. The analysis of variance

cited above may be considered not strong since only three values

comprised the control sample in each case. In the threshold of

sweating experiments, the data for women from days 1 and 15 of

the menstrual cycle were compared using a 2-tailed Student's

T-test for paired observations. The data from the men were com-

pared to each of the two groups of women using a 2-tailed Stu-

dent's T-test for unpaired observations (Steel and Torrie, 1960).

To compare the latency to threshold for whole body sweating with

responsiveness to thermode cooling, the standard correlation co-

efficient for paired data was employed (Steel and Torrie, 1960).

Protocol

The subjects participated in two different but related

sets of experiments. In the first set, each subject was studied

4 times at approximately 2-week intervals. The women were test-

ed twice on the first day of menses (day 1) and twice on the 15th

day ± 2 days (midcycle). No effort was made to determine if ovu-

lation had or had not occurred by the time of the midcycle test.

Scheduling of experiments at the same time of day for each sub-

ject was not possible. During the experiments, men wore light-

weight cotton shorts and women wore 2-piece bathing suits. The
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ambient temperature (TA) was held constant during each experi-

ment to produce moderate sweat rates in the subject (0.2-0.6

mg/cm2/min) from those areas where sweat output was measured.

However, a different TA (range = 43-52° C dry bulb) was neces-

sarily selected for each subject, because the same TA produced

sweat rates which were dramatically different among all subjects.

Relative humidity was 30 ± 5% and turbulent wind velocity, mea-

sured by anemometer, was 0.12 ± 0.02 m/sec.

Within 5 minutes after the subject entered the hot room

and sat on a wooden chair, the sweat capsules and thermistors

were strapped to the various skin surfaces. The thermode was

strapped to the left medial thigh, i.e., contralateral to the

sweat capsules and thermistors. Prior to the experimental pro-

cedure, the subject was allowed a minimum of 30 minutes in the

heat to permit stabilization of sweat rates. Following the in-

tervals of thigh cooling, the thermode was moved to the scapula

in two experiments and to the medial forearm in the other two

experiments. For the duration of the cutaneous cooling experi-

ment (2-3 hours), each subject sat quietly in the heat.

The experimental protocol consisted of 3 sequential ther-

mode cooling periods of 5 minutes duration on each of two skin

areas. The temperature of the thermode was progressively reduced

during the 3 exposures in any one area, although the temperature

was held constant during each separate cooling episode. A mild

(26-29° C), moderate (17-22° C) or severe (9-130 C) thermal

stimulus was applied to the skin via the thermode. Each cooling

period was separated by at least 5 minutes of non-cooling by
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circulating water through the thermode so that skin temperature

was maintained at the same level as that measured prior to the

cooling period. Control thermode temperature was determined by

the temperature of the skin contralateral to the thermode; e.g.,

control TT applied to the thigh was determined by the TS of the

contralateral thigh. The seventh and last cooling period of

each experiment, left whole hand cooling, was accomplished by

having the subject submerse his hand to the wrist in a basin of

water for 5 minutes at 32-33 C or 27-28 C which was 5 or 10 C,

respectively, below hand surface temperature. When the hand was

removed from the basin, a towel was quickly wrapped around the

wet limb to prevent evaporative cooling. In 2 of the 4 experi-

ments with 2 male subjects, arterial occlusion of the left arm

was initiated and maintained for 12 minutes prior to and 3 minutes

during whole hand cooling. In an additional experiment with the

same 2 male subjects, occlusion alone was maintained for 15 min-

utes. Arterial occlusion was performed by inflating a blood

pressure cuff to 180 mm Hg on the left upper arm. Although the

radial artery was not palpated for pulsations, this method of

arterial occlusion was judged to be effective because the area

distal to the pressure cuff appeared cyanotic; each subject re-

ported the absence of pain and venous distension concomitant

with an increasing numbness distal to the cuff as the occlusion

progressed.

In the second set of experiments, the latency period to

the threshold of sweating was determined for each of the 4 men

and for 3 of the 4 women. Two experiments were performed on
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each subject at 2-week intervals; both experiments on each sub-

jecL were performed at tile same time of day. In the case ol teic

women, one experiment was performed on day 1 of menstruation and

the other experiment during midcycle. Sweat rates and skin and

rectal temperatures were measured as previously described. Wind

velocity and relative humidity were similar to the previous set

of experiments. The subjects, dressed in shorts (men) or bath-

ing suits (women), entered the environmental chamber and sat

quietly for 15 minutes (TA = 22-23 C dry bulb). The TA was

gradually increased until sweating was initiated; threshold of

sweating (whole body) was arbitrarily determined to be the ini-

tial detection of cyclic sweat gland activity from any one of

the three skin areas monitored by sweat capsules.



CHAPTER III

RESULTS

Sweat Rate Responses to Contralateral Cooling

Cutaneous cooling, produced both with the thermode and

with whole hand cooling, often resulted in an immediate diminu-

tion of sweat rates in remote skin areas (Figures 1, 2 and 3).

Since the distance between the sweat capsules and humidity sen-

sors caused a delay of 7 seconds for any change in sweat rate to

be recorded, and since the recorded response following the initia-

tion of cutaneous cooling occurred within 10 seconds, the reduc-

tion of sweat rates occurred within 3 seconds following the stim-

ulus. Therefore, a positive response was defined as any reduc-

tion in sweat rate which occurred within 10 recorded seconds fol-

lowing the initiation of contralateral cutaneous cooling, induced

either by thermode or by whole hand cooling. When a positive re-

sponse did occur, an initial depression in cyclic sweat gland

activity was most often observed.

Tables 2 and 3 show the significance of positive sweat

rate responses due to thermode and whole hand cooling in 4 men

and 4 women, respectively. Sweat rate depression did not always

occur in response to thermode cooling (0.4% of body surface area);

when a response did occur, the duration varied from 1 to 5 minutes.

Following the local cooling, the recovery period allowed the sweat

14
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II min. TIME (minutes)
Figure 1. Changes in sweat gland activity due to
thermode cooling on the medial left thigh of
male subject.
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1 min. TIME (minutes)
Figure 2.
whole left

Changes in sweat gland
hand cooling at 32°C in

activity due to
a male subject.
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Figure 3. Changes in sweat gland activity due to whole
left hand cooling at 27°C in a female subject.
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TABLE 2

MEAN AND RANGE OF P VALUES FOR POSITIVE
RESPONSES DUE TO CONTRALATERAL
CUTANEOUS COOLING IN 4 MEN

Effect of left thigh cooling on contralateral sweat rates

Thermode Significance
Temperature R. R. R.

Subject (0C) Calf Scapula Forearm

R.W. 26 NS NS NS

R.W. 26 NS NS NS

R. W. 27 0.01 0.0005 0.0025
(0.005-0.05) (0.0005) (0.0025-0.01)

R. W. 25 NS NS NS

N.B. 26 NS NS NS

N. B. 26 NS 0.005 NS
(0.0025-0.025)

J. D. 26 NS NS 0.005
(0.0025-0.01)

J.D. 26 NS NS NS

J.K. 19 NS NS NS

R. W. 19 NS NS NS

R. W. 19 NS NS NS

R. W. 20 0.025 0.01 0.0125
(0.0125-0.025) (0.025-0.01) (0.01-0.025)

R. W. 17 0.0125 0.0125 NS
(0.0025-0.025) (0.005-0.05)

N. B. 20 0.01 0.025 NS
(0.005-0.0125) (0.0125-0.05)

N. B. 20 0.05 0.05 NS
(0.01-NS) (0.01-NS)

N. B. 20 0.01 0.005 0.05
(0.01-NS) (0.0025-NS) (0.05-NS)

J. D. 21 0.05 0.05 NS
(0.025-NS) (0.05-NS)

J.D. 21 NS NS NS

J. D. 18 NS 0.01 NS
(0.01-0.05)

J.K. 21 NS NS NS

R. W. 9 0.025 0.0125 0.025
(0.025-NS) (0.0125-NS) (0.025-NS)

R.W. 11 NS NS NS

R.W. 10 NS NS NS

J. D. 12 NS 0.05 0.05
. (0.05-NS) (0.05-NS)

J. K. 12 0.01 NS NS
[ (0.0025-0.025)

J. ~. 11 0.025 0.025 0.0125
l ~(0.0125-0.05) (0.01-0.05) (0.01-0.025)

I 
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TABLE 2--Continued

Effect of left scapula cooling on contralateral sweat rates

Thermode Significance
Temperature R. R. R.

Subject (°C) Calf Scapula Forearm

R. W. 27 0.05 0.025 0.05
(0.025-NS) (0.025-NS) (0.025-NS)

J. D. 27 o. o 0.05 0.05
(o.O1-Ns) (o.05-NS) (0.05-NS)

J. K. 27 0.05 0.05 NS
(o.o-05-NS) (o.05-Ns)

R.W. 20 NS NS NS

J. D. 21 0.01 0.01 0.01
(0005NS) (0.0005-0.05) (0.01-NS)

R. W. 10 0.0125 0.0125 0.025
(0.0125-NS) (0.0125-NS) (0.0025-Ns)

Effect of left forearm cooling on contralateral sweat rates

Thermode Significance
Temperature R. R. R.

Subject (°C) Calf Scapula Forearm

J. K. 24 NS NS 0.05
(0. 5)

R. W. 21 0.005 0.01 0.05
(0.005-0.0125) (0.01-0.05) (0.0o25-NS)

R. W. 22 NS NS NS

R. W. 17 NS 0.01 NS
(0.01)

J.K. 18 NS NS NS

R. W. 12 0.0025 0.005 0.005
(0.0005-0.01) (0.0025-0.005) (0.0025-0.01)

N.B. 11 NS - NS

J. D. 11 NS 0.01 NS
(0.005-0.01)

J.K. 10 NS NS NS

I
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TABLE 2--Continued

Effect of left whole hand cooling on remote sweat rates

Water Significance
Temperature R. R. R. L.

Subject (°C) Calf Scapula Forearm Forearm

R. W. 26 0.05 0.0005 0.01 0.0125
(0.01-0.05) (0.0005) (0.005_0.025) (0.0125-NS)

R.W. 27 NS NS NS NS

N. B. 27 NS NS NS NS

N.B. 26 NS NS NS NS

J. D. 27 0.0025 0.0025 0.0025 0.0005
(0.0025-0.005)(0.0025-0.005) (0.0025) (0.0005-0.0025)

J. D. 27 0.01 0.025 0.025 0.025
(0.01-0.05) (0.0125-0.05) (o.0o25-NS) (0.01-0.05)

J. K. 26 0.01 0.0005 0025 0.05
(0.01-0.05) (0.0005) (0.01-0.025) (0.025-0.05)

J. K. 26 0.05 0.05 NS NS
(0.05-NS) (0.05-NS)

J. D. 32 0.01 0.01 0.01 0.0025
________ ____(0.005-0.01) (0.005-0.0125) (0.005-0.025)(0.0025-0.005)

J. D. 32 NS 0.05 0.025 0.0125
(0.05-NS) (0.025-NS) (0.0125-0.05)

J. K. 32 0.025 0.05 0.05 0.05
. ____ _ .(0.025-NS) (0.05-NS) (0.05-NS) (0.05-NS)

J. K. 32 0.025 NS NS 0.025
(0.025-NS) (0.025-NS)
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TABLE 2--Continued

Effect of left whole hand cooling during and after
left arm occlusion on remote sweat rates

Water Significance
Temperature R. R. R. L.

Subject ( 0 C) Calf Scapula Forearm Forearm

R. W. 26 DOa 0.05 NS 0.05 0.05
(o.05-NS) (0.05-NS) (0.05)

AO
b

NS NS NS NS

R. W. 27 DO 0.05 NS 0.05 0.005
(o. 05-NS) (o.05-NS) (0.005-0.025)

AO 0.05 0.005 NS NS
(0o.o0125-0.05)(00.025-0.0125)

N. B. 26 DO NS 0.05 NS NS
(0. 025-0. 05)

AO NS NS NS NS

N. B. 26 DO NS NS NS 0.025
(0.01-0.05)

AO NS NS 0.05 NS
(0.05)

aDuring occlusion

bAfter occlusion

When statistical significance is lost by minute 2 of the cooling
period, the significance for minute 1 with the range of values are
given. When statistical significance is lost by minute 3 of the cool-
ing period, the most significant value from minutes 1 and 2 with the
range of values are given. When statistical significance is lost by
minute 4 or 5 of the cooling period, the most frequently occurring
value with the range of values are given.

Ranges of significant values are given within parentheses.
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TABLE 3

MEAN AND RANGE OF P VALUES FOR POSITIVE RESPONSES DUE TO
CONTRALATERAL CUTANEOUS COOLING IN 4 WOMEN DURING

DAYS 1 AND 15 OF THE MENSTRUAL CYCLE
.'

Effect of left thigh cooling on contralateral sweat rates

Thermode Significance-day 1
Temperature R. R. R.

Subject (°C) Calf Scapula Forearm

G. T. 25 0.01 0.01 0.0125
O._T._20 _ (0.005-NS) (0.o005-Ns) (0.0125-NS)

G. T. 20 Ns NS NS

M.M. 20 NS NS NS

M.M. 21 NS NS NS

G. T. 11 0.05 0.01 0.025
(0.05) (0.01-0.025) (0.025-0.05)

G. T. 13 0.01 0.01 0.01
(0.01-NS) (0.01-NS) (0.01-NS)

M. M. 11 - NS NS NS

M. S. 10 0.01 0.01 0.05
(0.005-0.025) (0.01-0.025) (0.025-0.05)

Effect of left scapula cooling on contralateral sweat rates

Thermode Significance-day 1
Temperature R. R. R.

Subject (°C) Calf Scapula Forearm

M. M. 26 NS NS 0.025
_(0. 025-NS)

M. S. 26 NS NS NS

M. M. 22 0.05 0.05 0.0125
(0.05-NS) (0.05-NS) (0.0125-NS)

G.T. o10 NS 0.0125
(o0.0125-Ns)

M. M. 11 0.05 0.01 0.05
(0.025-NS) (0.01-NS) (0.05-NS)

Effect of left forearm cooling on contralateral sweat rates

Thermode Significance-day 1
Temperature R. R. R.

Subject (°C) Calf Scapula Forearm

E.S. 25 NS NS NS

M. M. 19 NS NS NS

E. S. 17 NS NS NS

M. S. 20 NS 0.05 NS
(0.025-NS)

G.T. 13 NS NS NS

M. M. 10 NS NS NS
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TABLE 3--Continued

Effect of left thigh cooling on contralateral sweat rates

Thermode Significance-day 15
Temperature R. R. R.

Subject (°C) Calf Scapula Forearm

M. M. 27 0.005 0.0125 0.025
(0.0025-0.025) (0.0125-NS) (0.025-NS)

G. T. 22 -- NS NS

M. M. 21 NS NS NS

E. S. 21 0.01 0.05 NS
(o.O1-Ns) (o.05os-Ns)

M.M. 12 NS NS NS

M.S. 13 NS NS NS

Effect of left forearm cooling on contralateral sweat rates

Thermode Significance-day 15
Temperature R. R. R.

Subject (°C) Calf Scapula Forearm

.M. 25 NS NS NS

E. S. 26 0.025 0.025 0.025
(0.025-NS) (0.025-NS) (0.01-0.05)

G.T. - 21 NS NS NS

M.M. 19 NS NS NS

E. S. 19 NS NS NS

M.S. 20 NS NS NS

G. T. 12 NS 0.025 0.05
(0.025-NS) (O.05-NS)

M.M. 11 NS NS NS

E. S. 12 NS 0.005 NS
(0.0025-0.05)
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TABLE 3--Continued

Effect of left whole hand cooling on remote sweat rates

Water Significance-day 1
Temperature R. R. R. L.

Subject (°C) Calf Scapula Forearm Forearm

G. T. 27 NS NS NS NS

G. T. 27 NS 0.025 0.025 0.025
(0.025-NS) (0.025-NS) (0.0125-0.05)

M. M. 27 0.005 0.005 0.025 0.025
(0.005-0.02(0.00.005) (0.025) (0.0125-0.05)

M. M. 26 0.0125 0.025 0.05 0.005
(0.01-0.05) (0.01-0.05) (0.0025-0.01) (0.005-0.025)

E. S. 28 NS 0.05 0.025 NS
(o.025-o.o05) (0.01-0.025)

E. S. 2? NS NS NS 0.01
(0.005-0.05)

M. S. 27 0.01 0.025 0.005 0.01
(o.005-NS) (0.0005-0.01) (0.0025-NS) (0.01-0.025)

M. S. 28 0.025 0.025 0.0125 .01
._______ .(0.01-0.05) (0.0125-0.025) (0.01-0.025) (0.01-0.05)

Significance-day 15

G. T. 27 0.01 0.01 0.005 0.01
(ooo005-0.01) (0.005-0.01) (0.005-0.01) (0.01)

G. T. 27 NS NS NS NS

.? ~27 0.05 0.025 0.025 
._______~ .(0.0125-NS) (0.01-NS) (0.0125-NS)

N. X. 26 N S NS NS NS

S. 27 0.05 0.005 0.005 'NS
.____ .__ ~(0.0125-0.05)(0.0025-0.025) (0.0025-0.01)

I s. 27 o.o1 0. 0.01 0.0 l
.____ .__ ~(0.005-0.025)(0.0025-0.005) (0.025-NS) (0.005-0.0125)

. S. ~27 05 .0025 O ,025 0.025
(0.05-NS) (0.01-NS) (0.0125-NS) (0.01-NS)

K S. 27 0.025 0.0025 O.T2 0.0125
(0.01-NS) (0.0025-0.01) (0.0025-0.01) (0.01-0.05)

See Table 2 for explanation of notation.
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rates to recover to pre-cooling values. Sweat rate depression

consistently occurred in response to whole hand cooling (2.5% of

body surface area). In most cases, the depression was signifi-

cantly sustained below control levels throughout the whole hand

cooling period. Following cessation of the stimulus, the depres-

sion of sweat rates continued from 1 to 8 minutes. Individual

variation in response to similar stimuli between subjects was

quite noticeable.

Comparison of Sweat Rate Responses Between
Men and Women to Contralateral Cooling

Table 4 divides the results of the cutaneous cooling

experiments into 2 groups according to sex. The thermode cool-

ing results are treated both by (1) pooling the sweat rate data

from the 3 different skin areas monitored during contralateral

cutaneous cooling of 1 skin area (horizontal tabulation), and (2)

by pooling the sweat rate data monitored from 1 skin area during

contralateral cutaneous cooling of 3 different skin areas (verti-

cal tabulation).

In the men, scapular skin cooling (60 observations) produced

30.0% positive responses, which was slightly more than one-half

the percentage of positive responses produced by cooling either

the thigh (141 observations, 55.3% responses) or the forearm

(56 observations, 46.4% responses). However, the percentage of

significant responses was slightly greater during scapular skin

cooling (23.3%) than during either thigh or forearm cooling

(20.6% and 16.1%, respectively). The percentage of positive sweat

rate responses from each area was quantitatively similar (47.1-
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47.7%) regardless of the contralateral location which was cooled.

Significant reductions in sweat rate from the scapular skin during

thermode cooling occurred slightly more often (24.7%) than did

reductions in sweat rate of the right calf (19.8%) or of the

right forearm (16.3%). In brief, thermode cooling of the scapu-

lar skin produced the highest percentage of significant sweat

rate reductions, and the sweat rate of the same area produced the

highest percentage of significant reductions regardless of the

area cooled.

In women, thermode cooling of the forearm produced a greater

percentage of positive responses (68.2%) than did cooling either

the thigh or the scapular area (28.7% and 22.7%, respectively).

However, the significant responses of the sweat rates to thermode

cooling in all 3 areas were essentially similar, i.e., no one area

responded differently from any other area. Therefore, no one area

cooled generated more significant responses than any other area

cooled and, likewise, no one area responded predominantly.

In summary, for 86 thermode cooling periods in 4 men, 257

sweat rates yielded 122 positive responses (47.5%) of which 52

were significant (20.2%). For 92 thermode cooling periods in

4 women, 275 sweat rates yielded 101 positive responses (36.7%)

of which 33 were significant (12.0%).

Positive responses were consistently observed during whole

hand cooling in all subjects. In 8 experiments on 4 men where the

water temperature was 100 less than hand temperature, 56.2% of

32 sweat rates were significantly reduced. In a total of 4 ex-

periments on 2 of the 4 men, where the water temperature was 5 C
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less than hand temperature, 81.2% of 16 sweat rates responded

significantly. The large difference in significant responses be-

tween whole hand cooling at 10° C less than hand temperature and

at 5° C less than hand temperature may be attributed to the smaller

number of observations of the latter. Therefore, more or less

significant responses would more greatly influence the final re-

sult in the case of whole hand cooling at 5° C less than hand tem-

perature. In 16 whole hand cooling experiments on 4 women where

the water temperature was 10° C less than hand temperature, 69.8%

of 63 sweat rates were significantly reduced.

In a total of 4 experiments on 2 men during arterial occlu-

sion of the left arm, which was maintained 12 minutes prior to

whole hand cooling, all sweat rates except that of the occluded

limb were observed to increase (Figure 4). When the occlusion

was maintained and whole hand cooling initiated, 50.0% of 16

sweat rates decreased significantly. When the occlusion was re-

moved but the hand remained in the water for an additional 3 min-

utes, 18.8% of the 16 sweat rates were significantly diminished

below those observed during occlusion. Figure 5 illustrates the

effect of 15 minutes of left arm arterial occlusion on remote

sweat rates. All sweat rates, except that of the occluded limb,

increased during arterial occlusion but subsided to pre-occlusion

values when the occlusion was released.

Skin (T
S
) and rectal (TR) temperatures were not perceptively

altered during thermode or whole hand cooling. However, local

cooling could have affected temperature changes which were imper-

ceptible to the thermal sensors used. Small variations in the
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six TS occasionally occurred (± 0.2 C) during each experiment,

but they were not necessarily related to any experimental inter-

vention. Further, these changes were never reflected in all six

TS simultaneously. During the time each subject spent in the hot

room (2-3 hours), TR gradually increased 0.10-0.32 C above a rel-

atively stable temperature established during the initial 30 min-

utes of heat exposure.

Influence of the Menstrual Cycle on the Sweat
Rate Responses to Contralateral Cooling

Table 5, which is constructed in the same manner as is

Table 4, presents the results of 16 experiments in 4 women per-

formed on days 1 and 15 of their menstrual cycle and grouped ac-

cordingly. As previously stated, forearm cooling gave the larg-

est percentage of positive responses, and this was true regard-

less of the time during the menstrual cycle when the experiments

were performed. However, the results indicate that on day 1 the

scapular skin yielded a higher percentage of responses than did

either of the other two areas tested. Similarly, on day 15 the

forearm yielded a higher percentage of significant responses than

did either of the other two areas tested. Thermode cooling of

the scapular skin area produced no positive responses on day 15.

The sweat rates of the forearm showed a slightly larger number

of significant responses to thermode cooling than did either of

the other areas tested on day 1. Likewise, on day 15 the sweat

rates of the scapular skin produced a larger number of signifi-

cant changes to thermode cooling than did the other areas tested.

In summary, then, 138 sweat rate observations from 46 ther-
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mode cooling periods involving 3 different skin areas were made

on day 1 of menstruation. Of those observations, 57 (41.3%) pos-

itive responses occurred of which 21 (15.2%) were significant.

On day 15 after the onset of menstruation, 137 sweat rate obser-

vations from 46 thermode cooling periods of 3 different skin

areas produced 44 (32.1%) positive responses of which 12 (8.8%)

were significant. The number of significant sweat rate responses

on day 1 was nearly twice as large as those on day 15. The sig-

nificant sweat rate responses to whole hand cooling on day 1 and

day 15 were 68.8% and 71.0%, respectively.

Comparison of Threshold of Sweating
Responses Between Men and Women

Table 6 presents the results of the threshold of sweating

experiments to total body heating for 4 male and 3 female subjects.

The results were divided into 3 groups; (1) women on day 1, (2)

women on day 15, and (3) men at a 2-week interval. Figures 6

and 7 show that the increases in TA during the 2 experiments on

any one subject were similar.

As a group the women displayed a significantly longer pe-

riod to sweating onset (latency = 67 minutes on day 1 and 87 min-

utes on day 15) than did the men (latency = 32 minutes), but there

was no significant difference between day 1 of menses and day 15

following onset of menses, primarily due to the large variation

in latency times and the small number of observations. TA at on-

set of sweating was significantly higher for the women on day 1

(P <0.005) and day 15 (P <0.001) as compared to the men. The

change (A) in T5,S derived as the difference between initial or
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Figure 7. Rate of environmental temperature change
during the determination of the threshold for whole body
sweating. Graphs E through G represent 6 experi -
ments with 3 subjects. Graph H is a composite of
graphs A through G. Temperatures indicate the
onset of sweating.
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starting temperature and final or threshold temperature, was

significantly larger in both groups of women than the change pro-

duced in the men. The AT was significantly greater in women on
R

day 1 (P <0.005) as compared to the men. Change in mean body

temperature (TB), which is a function of TS and TR, was signifi-

cantly greater in women on day 15 as compared to both the women

on day 1 (P <0.05) and the men (P <0.001). Although initial skin

temperatures for all 3 groups were not different, which reflects

the influence of TA on the skin, initial TR values were lower in

women on day 15 as compared to the other 2 groups.

Correlation of Latency to Threshold for
Whole Body Sweating with Sweat Rate

Responses to Thermode Cooling

When the latency period to the threshold for whole body

sweating was correlated with the percentage of positive responses

due to thermode cooling for each male and female subject, the re-

sult was a correlation coefficient (r) of -.63 (Figure 8). Al-

though r was approaching the 0.05 level of confidence, the cor-

relation was not statistically significant, primarily because of

the small number of observations and large individual variations

in responses. A negative relationship might exist, suggesting

that the latency period to threshold of whole body sweating could

be inversely related to the responsiveness of the sweat glands

due to thermode cooling.



38

- 0)~~40
I- I C

m m~~~~~~~~~~~~~~~%

I...

cE EE
0 0~~~ 0 

X:: > _ ° 00

0~~~~~ 

LU t

.1

U-

/.E~1 C

I/ I I I I ,o

0d

C)

=~0

_ N~OIA 130V :!O 3NOd

_CC C_,) -

.CD

(°6) SNll-S3SS2 o3

O'.C

(% SNOliVAd3S9O1IVIOI JO 3SNOdS3NI'J



CHAPTER IV

DISCUSSION

The sweat rate response to cutaneous cooling appears to be

mediated by a neural reflex, since the interval between the cold

stimulus and the sweat rate reduction was 3 seconds or less. No

hormonal or cardiovascular mechanism could account for the brief

interval observed between local stimulus and generalized re-

sponse. Continuous monitoring of sweat rates by resistance hy-

grometry, with its sensitivity to small instantaneous changes in

dynamic sudomotor activity, allows this conclusion to be drawn.

These results strongly support the findings of Kuno (1956), Breb-

ner and Kerslake (1961b), Rawson and Hardy (1967), Bullard, Baner-

jee and Mac Intyre (1967), and Banerjee, Elizondo and Bullard

(1969) that the immediate diminution in sweat rate due to appli-

cation of a cutaneous cold stimulus is mediated by a neural re-

flex.

The interpretation that the response to cutaneous cooling

is neurally mediated is strengthened by eliciting sweat rate re-

ductions in areas remote to the cooled limb which had its circu-

lation occluded (Kuno, 1956; Bullard, Banerjee and Mac Intyre,

1967; Banerjee, Elizondo and Bullard, 1969). Figure 4 demonstrates

the same result, but, more importantly, the response was markedly

augmented when the occlusion was released. The statistical

39
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treatment, however, does not reveal the true nature of the re-

sponses during and following release of the occlusion and is,

in fact, misleading. The actual diminution of sweat rates was

much greater during whole hand cooling following the release of

the occlusion than before the release (Figure 4). This point was

statistically concealed due to the large variation in sweat rates

during whole hand cooling plus occlusion from which values were

extracted and used as the control for whole hand cooling without

occlusion.

During ischemia of the arm, the temperature of the oc-

cluded limb certainly increased due to the cessation of circula-

tory heat exchange and the marked attenuation in evaporative cool-

ing. Bullard, Banerjee and Mac Intyre (1967) showed that when

blood flow to the thigh was occluded, heating an area of skin dis-

tal to the occlusion presumably stimulated peripheral warm recep-

tors which increased the sweat rates proximal to the occlusion.

Concomitant with increased sweat rates proximal to the occlusion

(Figure 4), the sweat rate distal to the occlusion was depressed,

due partly to a loss of responsiveness of the sweat glands to

neurotransmitter (Collins, Sargent and Weiner, 1959). The anoxic

situation produced by occlusion reduces metabolic processes of

the sweat glands, presumably rendering them less sensitive to

sudomotor activity. However, 35 to 40 minutes of ischemia pro-

duced by occlusion of the upper arm apparently does not reduce

sympathetic vasomotor and pilomotor activity distal to the oc-

clusion (Lewis, Pickering and Rothschild, 1931). Similarly, su-

domotor nerves of the same C fiber class, to which vasomotor
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and pilomotor nerves belong, might be expected to resist the anox-

ic condition and attempt to maintain their function during occlu-

sion. The reflex sweat rate response observed after release of

the limb occlusion while whole hand cooling was continued, then,

can be ascribed to increased afferent activity which was affected

by the occlusion. Hensel (1953) observed that within a few min-

utes following ischemia of the cat tongue, the steady discharge

of cold fibers from the ischemic area was abolished. When the

occlusion was released, the discharge was restored to initial

levels within 15 to 30 seconds. In view of these observations,

the inability of Hill (1921) to see a neurally mediated sweat rate

reduction, by occluding the circulation to the arms before hand

cooling, is more understandable, particularly when the crude

method of measuring sweat rate is considered. Burch and Sodeman

(1944) and Brebner and Kerslake (1961a) failed in their attempts

to elicit neurally mediated sweat rate responses from areas prox-

imal to ischemic limbs which were cooled distal to the occlusion,

because of effects produced by the occlusion and poor techniques

used to measure sweat rates. The rapid and transient nature of

the reflex sweat rate response, especially during cooling of an

occluded limb, dictates a continuous measurement of cutaneous

water loss, e.g., resistance hygrometry, for accurate measurements

to be made and confident conclusions to be drawn.

When the blood supply to an arm was occluded for 15 min-

utes with no additional experimental intervention (Figure 5), in-

creases in sweat rates to areas proximal to the occlusion were

observed to occur concomitantly with a reduced sweat rate distal
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to the occlusion. Restoration of blood flow to the limb resulted

in re-establishment of pre-occlusion sweat rates. The mechanical

act of occluding a limb was determined to be uninfluential in

eliciting reflex responses to cutaneous whole hand cooling.

Men responded 8-11% more often to cutaneous cooling than

did women (Table 4). In addition, the magnitude of the responses

was significantly larger for the men (Tables 2 and 3). At least

three possibilities could explain these differences. (1) The

density of cold receptors could be less in the women. (2) Cuta-

neous cold receptors may be influenced by hormones. (3) Women,

who have a greater skinfold thickness than do men, may have cu-

taneous or subcutaneous adipose tissue which could influence con-

ductance of the cold stimulus to temperature sensitive receptors.

As of this time, no histological evidence has been present-

ed to suggest that women have any fewer thermal receptors than do

men. In fact, the inability to confidently define thermal recep-

tors has only resulted in ambiguous structure-function relation-

ships for afferent cutaneous nerves. As a result, any discussion

which relates the effects of hormones on cutaneous thermal recep-

tors is a moot point. Hardy and Du Bois (1940) found that women

had a greater skinfold thickness than did men, and they calculated

that the average difference represented a layer of fat about 4 mm

thick. Further, they noted that the conductance of peripheral

tissues was 20% lower than that of men. In this case, the addi-

tional adipose tissue might infiltrate the area around the ther-

mal receptors resulting in partial insulation of the thermal re-

ceptors to external stimuli. Therefore, the presence of extra
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subcutaneous fat in women may have diminished the effectiveness

of the cold stimulus on the receptors.

Much evidence has accumulated which supports the presence

of warm and cold receptors in the skin. Traditionally, cold re-

ceptors are thought to be superficial Krause cylinders, whereas

warm receptors are believed to be the deeper Ruffini end-bulbs.

However, free nerve endings have been implicated in thermal per-

ception and should be included as a possibility at this time.

Bazett (1941, 1951) is primarily responsible for building a

strong case for the assignment of roles for the Ruffini and Krause

receptors participating in warm and cold reception, respectively.

Bazett, McGlone and Brocklehurst (1930) determined the interval

for various depths of skin at which a cold stimulus when applied

to the surface could be detected. On the basis of the anatomi-

cal locations of Krause and Ruffini receptors, stimulation of

Krause receptors would occur 0-1.25 seconds following the cold

application. Similarly, stimulation of deeper Ruffini receptors

would require 2.7-6.5 seconds following the cold stimulus. The

determination of these intervals support the probability of Krause

receptors participating as the origin of the neural reflex to

cutaneous cooling. The concept that cold receptors are found

nearer the surface of the skin than warm receptors has been ad-

ditionally substantiated in many respects (Rothman, 1954). Con-

duction of impulses produced by a cold stimulus are presently

considered to occur in 6-group class A and/or class C fibers

(Zotterman, 1936; Hensel, Iggo and Witt, 1960).

Many attempts have been made to map out the density of
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these receptors on different areas of the body (Rein, 1925;

Goldscheider, 1926; Strughold and Porz, 1931). However, Bing

and Skouby (1949) discovered that the large variations between

studies, and for that matter within the same subject, was most

likely due to differences in skin temperature at the time of

density measurement. They showed that the number of reacting

cold spots within a given area of the forearm increased with the

skin temperature from 17 at 25° C to 93 at 33° C. This fact

alone diminishes the possibility of correlating the number of

cold spots, previously mapped out on different skin areas, to

the magnitude and duration of the reflex sweat rate responses due

to cutaneous cooling of different skin areas.

On the other hand, if the density of cold receptors is

assumed to be dissimilar in different skin areas, the results

of cooling those skin areas might be expected to show a response

related to that density. Using the results of cold spot mapping

from different areas of the body by Strughold and Porz (1931),

the back, which has a slightly greater density of cold spots than

either the forearm or thigh, would predictably respond better to

thermode cooling than would the other two areas tested. Further-

more, the hand, which exhibits a cold spot density nearly 5 times

greater than any area cooled by the thermode, should produce a

better reflex response to cutaneous cooling than any area tested

with the thermode. The results of the present experiments in

both men and women (Tables 2 and 3) are consistent with these hy-

potheses. Of all thermode cooling periods on all skin areas

tested, the scapular area was the most sensitive. Whole hand
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cooling was consistently successful in eliciting a reflex response.

The reflex response is apparently present throughout the body,

e.g., cooling the forearm skin resulted in a diminished scapular

sweat rate and vice versa (Table 4). Frequency and duration of

responses seem to be affected by receptor density and activation

which are functions of the change in temperature and site of

stimulation.

Recovery of sweat rate depression often occurred within

2 or 3 minutes following the initiation of thermode or whole hand

cooling, although the stimulus was maintained for 5 minutes. At

least two plausible explanations could account for this occurrence.

(1) The reduction in evaporative heat loss momentarily drove the

core temperature upward in addition to stimulating warm receptors

in the skin. Subsequently, acting as a driving force to produce

greater body heat loss, the increased core temperature and stim-

ulation of peripheral warm receptors were reduced by the recovery

in sweat rate depression (Bullard, Banerjee and Mac Intyre, 1967;

Banerjee, Elizondo and Bullard, 1969). Therefore, the reflex

response is probably in part inversely related to rate of heat

loss as determined by the level of core temperature and input

from the peripheral thermal receptors to the hypothalamus. This

relationship was not quantitatively assessed in these experiments.

(2) Acting alone or in concert with the need to reduce body heat,

adaptation of thermal receptors to the cold stimulus could con-

tribute to the reversal of sweat rate depression during the cool-

ing period. In human volunteers, Hensel and Boman (1960) ap-

plied various cutaneous stimuli, including thermode cooling, to
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the receptor field innervated by fibers which were isolated and

monitored for rate of impulse discharge. Clearly, the impulse

frequency dramatically increased concomitant with the onset of

thermode cooling, but the rate of neural discharge slowly de-

clined while the cutaneous stimulus was maintained.

The quantity of positive responses appeared to be influ-

enced by the rate of change in temperature of the applied stimu-

lus. Whereas the absolute thermode temperature was varied with

each stimulus (Tables 2 and 3), the rate of temperature change

was similar in all cases. Regardless of the absolute temperature

applied as the stimulus, the observed responses occurred in simi-

lar frequency. Why more reflex responses to thermode cooling

did not occur is not clear. The rate of heat loss may have been

sufficiently high to overcome the thermal stimulus applied via

the thermode. In addition, if the interval between thermode

cooling periods was too short to allow full recovery of tissues

to control temperatures, maximum effects produced by application

of the second or third cold stimulus may have been attenuated.

Although the temperature of each thermal stimulus on any one area

was progressively lower, the number of positive responses wasnot

larger for the first thermode cooling compared to the second or

third cooling periods (Tables 2 and 3). This would indicate that

residual tissue effects were small from one cooling period to the

next, and that the interval between thermal stimuli was long e-

nough to allow full recovery. These observations further substan-

tiate the assertion that the receptors respond to rate of change

rather than to the absolute temperature applied (Zotterman, 1959;
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Banerjee, Elizondo and Bullard, 1969). Figure 4 shows that a

cool stimulus of 32° C, which reduced the skin temperature of the

hand from 37 to 34° C, elicited a reflex sweat rate reduction for

the duration of the cooling period. This observation is contrary

to those of Benzinger (1961, 1964) who insisted that skin tem-

perature must be 33° C or less in order for peripheral cold re-

ception to inhibit (influence) the hypothalamus which in turn

would suppress sweating.

On day 1 of menstruation, the women appeared to be 7-9%

more responsive to cutaneous thermode cooling compared to day 15

of their cycle (Table 5). The reason for this difference is not

clearly apparent, since the experimental conditions were similar

for each of 4 experiments in all subjects and since the number of

observations was large and similar for days 1 and 15. Davis and

Fugo (1948), Buxton and Atkinson (1948), and Israel and Schneller

(1950) have demonstrated the pyrogenic effect produced by proges-

terone which is more likely responsible for the increased body

temperature associated with the luteal phase of the menstrual

cycle. Kenshalo (1966) determined that women were more sensitive

to threshold cool stimuli between ovulation and onset of menses

(luteal phase). The increased sensitivity, associated with in-

creased cutaneous vasodilatation, was related to release of pro-

gesterone by the Graafian follicle. Progesterone derivatives,

when given prior to ovulation, produced the same effect on the

cool threshold as though ovulation had occurred. Effects of

estrogens and progesterone on thermal receptors remains obscure.

Conceivably, progesterone could be responsible for the increased
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responsiveness to cutaneous thermode cooling on day 1 of menses

as compared to day 15.

In a further attempt to show that the reflex response to

cutaneous thermode cooling was affected by the sex and menstrual

cycle of the subjects, latency periods to threshold of sweating

during an increasing ambient temperature were determined concomi-

tant with changes in skin and core temperature (Table 6). Any

acclimitization effects produced were obviously minimal since

there were no apparent trends in latency times, environmental,

rectal and skin temperatures between the first and second experi-

ments. Since the increase in ambient temperature was similar in

all cases (Figures 6 and 7), the results were grouped according

to sex and menstrual cycle. Like Kawahata (1960) and Fox, Lof-

stedt, Woodward, Eriksson and Werkstrom (1969), the latency period

to onset of sweating was found to be much longer for women as

compared to men, when both groups were exposed to a similar TA.

Furthermore, the TA, at which sweating began, was 6-100 C higher

for women, depending on which time during the menstrual cycle the

test was performed. There would appear to be at least two reasons

for these observations. First, the smaller increase in metabolic

rate exhibited by the women, when they were exposed to the same

environmental stress as men, allowed them to approach thermal

equilibrium by convective and radiant heat losses rather than by

sweating (Hardy and Du Bois, 1940; Hardy, Milhorat and Du Bois,

1941). Second, the skinfold thickness, which is nearly twice as

large in women, creates insulation from the heat in two directions.

The cutaneous and subcutaneous fat act as a heat sink, insulating
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the core from the environmental stress. In addition, as the core

temperature increased, the onset of sweating would be delayed by

the vasomotor mechanism of increasing flow of warm blood away

from, and cooler blood towards, the core. The significantly high-

er ATS observed in the women as compared to the men illustrates

the important capability of the skin in regulating heat loss and

gain by the organism.

The dermal recruitment pattern of sweat glands was similar

to the observations of Randall (1963). However, subjects did not

always begin sweating on the lower extremities, but began sweat-

ing simultaneously from the trunk, upper and lower extremities

in 50% of the experiments. As a group, the women began sweating

20 minutes sooner on day 1 of the menstrual cycle and at a TA of

4° C lower than on day 15. TB was higher in women on day 1, but

TBf was essentially similar to that attained on day 15 at onset

of sweating. The simplest hypothesis is that the higher initial

body temperature on day 1 was due to the pyrogenic effect of

progesterone.

Latency to threshold for whole body sweating was correlated

with responsiveness to thermode cooling for each subject to deter-

mine if a knowledge of the former would allow a confident predic-

tion of the latter (Figure 8). The correlation coefficient (r =

-.63) indicates that latency to threshold may be inversely related

to responsiveness of the sweat glands due to thermode cooling.

However, this relationship, although approaching the 0.05 level

of.confidence, was not statistically significant. Accordingly,

at the present time, knowing the latency to threshold for whole
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body sweating does not allow a confident prediction of respon-

siveness of a subject to thermode cooling.



CHAPTER V

SUMMARY

Conclusions and Assertions

Relative to the five hypotheses stated in Chapter I, the

following statements recapitulate the findings of this study:

1. The immediate reduction in output by eccrine sweat

glands to contralateral cutaneous cooling appears to

be neurally mediated, since the sweat gland response

occurred within 3 seconds after initiation of the

thermal stimulus.

2. Frequency and magnitude, the quantitative aspects of

the reflex response, appeared to be affected by both

the density and activation of receptors as well as

the rate of heat loss of the subject during the test.

Sweat rates responded to the change in temperature

(gradient) rather than to the absolute temperature

applied.

3. Men responded 8-10% more frequently than women to

thermode cooling, the magnitude of responses being

greater for the men. A lesser frequency of responses

by the women might be attributed to the insulatory pro-

perties of subcutaneous fat about the thermoreceptors.

4. Women responded 7-9% more frequently to thermode cool-

51
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ing on day 1 as compared to day 15. The increased

frequency of responses (sensitivity) on day 1 could be

attributed to effects produced by endogenous progesterone

during the luteal phase of the menstrual cycle.

5. When confronted with an increasing TA during rest, men

exhibited a shorter latency to threshold for whole

body sweating than did women. Further, the TA at

threshold for whole body sweating was much lower for

men. On day 1 the women had a shorter latency and be-

gan sweating at a lower TA as compared to day 15 of

their menstrual cycle. In general, the longer latency

and higher TA at onset of sweating in women is at-

tributed to the insulative and heat absorptive prop-

erties of the skin. Latency to threshold for whole

body sweating cannot presently be used with confidence

to predict responsiveness of a subject to thermode

cooling.

Significance and Projections

Understanding the nature of the sweat gland response to

cutaneous cooling enables greater understanding of peripheral

(skin) influences on the central (hypothalamic) controller for

sweating. Particularly, the afferent neural pathway demands at-

tention since many investigations including this one have shown

the peripheral input to the hypothalamus to be important in the

regulation of sweat secretion. A more accurate mapping of cold

spots throughout the body concomitantly with histological exami-
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nations, using improved techniques, may prove more fruitful at a

future time. More definitive studies are necessary to identify

the skin receptors which actively participate in thermoregulation.

Occlusion experiments appear to be more of a detriment than

asset since the responsiveness of the afferent nerves has been

shown to be diminished by the anoxic condition. Although occlu-

sion and subsequent cooling of a limb clearly showed the reflex

response to be neurally mediated, the magnitude and duration of

the response was apparently affected by the activity of the affer-

ent nerves as determined by the duration of occlusion. Therefore,

since the response has been shown to be neurally mediated, and

since the anoxic conditions impedes a natural sweat gland response,

occlusion experiments serve only to eliminate cardiovascular effects

produced by prolonged cooling or heating of a large skin area.

Cutaneous cooling of more and different areas than those

in this study should be performed, and the sweat rate responses

assessed. Further, cutaneous cooling of 2 or more skin areas

simultaneously and/or serially might provide additional informa-

tion about the summative quality of peripheral input. Finally,

cooling of large skin areas during prolonged exposure to various

intensities of heat, to suppress sweating for as long as desired,

would provide a modifying control of the thermoregulatory process.

Women provide problems of special interest since they ap-

pear both to be less sensitive to cutaneous cooling than men, and

their menstrual cycle influences cold sensitivity. Definitive

studies should be performed to elucidate the extent of modifying

influences, both anatomical and menstrual, on cutaneous thermal
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receptors. The ability of women to thermoregulate through more

complex mechanisms than men raises additional questions, both

anatomical and physiological, about woman's relationship to her

environment.
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